Bender Blogs

The Theory of Isolation Monitoring Interrupters (IMIs) in Aviation

Written by Bender Inc | July 1, 2020

The recent rise of electric vehicles (EVs) has led various industries to investigate alternative drive trains and propulsion techniques. EVs are spearheading the development, and many production-ready vehicles have slowly but surely penetrated the automotive marketplace. Current battery energy densities and charging infrastructure are limiting factors in the widespread adoption of EVs.

Is electric aviation possible?

For electrical aviation to take off, it is generally assumed that a critical energy density of 500Wh/kg needs to be achieved in a battery to provide adequate flying time and range between charges. It is safe to assume that reaching these milestones is only a matter of time and has already been demonstrated in various labs. Fuel cell-powered systems have also been under investigation and proposed for aviation-related propulsion. Here, the drawbacks may be the high-pressure hydrogen storage systems needed, while the relatively high energy density would provide adequate flight time and range. The tanks and complexity of the fuel cell pose hurdles, as does the need for a refueling infrastructure, but this technology is currently being investigated as a viable option.

Configuring the electrical power system

The electrical power system configuration of choice for EVs and, subsequently, electric aviation, is ungrounded. The ungrounded system (sometimes called a floating system) has no intentional connection between the high voltage conductors and the vehicles’ reference ground or frame. Subsequently, the occurrence of high ground-fault currents and fire and shock hazards are being minimized.